Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257642

RESUMO

This research is dedicated to developing an automatic landing system for shipborne unmanned aerial vehicles (UAVs) based on wireless precise positioning technology. The application scenario is practical for specific challenging and complex environmental conditions, such as the Global Positioning System (GPS) being disabled during wartime. The primary objective is to establish a precise and real-time dynamic wireless positioning system, ensuring that the UAV can autonomously land on the shipborne platform without relying on GPS. This work addresses several key aspects, including the implementation of an ultra-wideband (UWB) circuit module with a specific antenna design and RF front-end chip to enhance wireless signal reception. These modules play a crucial role in achieving accurate positioning, mitigating the limitations caused by GPS inaccuracy, thereby enhancing the overall performance and reception range of the system. Additionally, the study develops a wireless positioning algorithm to validate the effectiveness of automatic landing on the shipborne platform. The platform's wave vibration is considered to provide a realistic landing system for shipborne UAVs. The UWB modules are practically installed on the shipborne platform, and the UAV and the autonomous three-body vessel are tested simultaneously in the outdoor open water space to verify the functionality, precision, and adaptability of the proposed UAV landing system. Results demonstrate that the UAV can autonomously fly from 200 m, approach, and automatically land on the moving shipborne platform without relying on GPS.

2.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36236662

RESUMO

Determining the direction-of-arrival (DOA) of any signal of interest has long been of great interest to the wireless localization research community for military and civilian applications. To efficiently facilitate the deployment of DOA systems, the accuracy of wireless localization is critical. Hence, this paper proposes a novel method to improve the prediction result of a wireless DOA localization system. By considering the signal variation existing in the complex environment, the actual location of the target can be determined including the maximum prediction error. Moreover, the scenario of the moving target is further investigated by incorporating the adaptive Kalman Filter algorithm to obtain the prediction route of the flying drone based on the accuracy assessment method. This proposed adaptive Kalman Filter is a high-efficiency algorithm that can filter out the noise in the multipath area and optimize the predicted data in real-time. The simulation result agrees well with the measured data and thus validates the proposed DOA system with the adaptive Kalman Filter algorithm. The measured DOA of the fixed radiation source obtained by a single base station and the moving route of a flying drone from a two-base station localization system are presented and compared with the calculated results. Results show that the prediction error in an outdoor region of 500×500 m2 is about 10−20 m, which demonstrate the usefulness of the proposed wireless DOA system deployment in practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...